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ABSTRACT 

An algorithm has been developed that uses flight data to estimate the parameters in an attitude dynamics model of a 
spacecraft.  The new algorithm's estimates can enhance the fidelity of Euler equation models that are used to implement back-
up mode attitude determination and control functions.  The algorithm's estimation equation is an integrated version of Euler's 
equation expressed in inertial coordinates.  It uses 3-axis attitude data and 3-axis rate-gyro data to yield a set of linear 
equations in the unknown dynamics parameters, which include moments and products of inertia and scale factors, alignments, 
and biases for all reaction wheels and magnetic torque rods.  The estimation problem statement includes the statistics of 
unmodeled torques and sensor errors, and it incorporates a scalar quadratic constraint to overcome the usual unobservability 
of the overall scaling of the dynamic parameters.  The sensor errors enter the model equation in a multiplicative fashion, 
which yields a total least-squares problem.  The solution algorithm employs a guarded Newton iteration and special recursive 
factorizations that deal efficiently with the dynamic structure of the measurement error effects.  The algorithm has been 
applied to the Microwave Anisotropy Probe (MAP) spacecraft, and the resulting parameter estimates show an ability to 
reduce torque modeling errors by a factor of 5 to 10. 

INTRODUCTION 

The goal of this research is to develop improved Euler attitude dynamics models for spacecraft by using flight data to 
estimate model parameters.  Parameters that might be estimated include the independent elements of the moment-of-inertia 
matrix, reaction wheels’ and magnetic torque rods’ scale-factors and alignments, and residual spacecraft angular momentum 
and magnetic dipole moment.  The latter quantities are the equivalent of biases in the reaction wheels and torque rods.  The 
estimation procedure presumes the availability of very accurate attitude and rate data from star trackers and rate gyros.  It also 
requires nominal reaction wheel angular momenta, nominal torque rod dipole moments, and magnetometer outputs, if 
relevant. 

The primary motivation for this work is to improve the performance of back-up mode attitude determination systems.  
Such systems use a reduced set of sensors because of the failure of primary sensors.  They must be able to operate without 
rate-gyro data or with incomplete rate-gyro information.  This type of system relies on Euler’s equation to propagate attitude 
rate estimates as in Refs. 1-7.  Improved Euler models also could be used to develop back-up mode slewing and pointing 
controllers that could function with a reduced actuator set. 

Back-up systems that rely on an Euler equation model exploit the property of observability or controllability of an 
attitude dynamics system in order to accomplish 3-axis attitude determination or control without the need for full 3-axis 
sensing or actuation.  The stability and accuracy/pointing performance of all such systems are highly dependent on the 
accuracy with which the rate dynamics can be modeled by Euler’s equations.  System designers normally try to avoid relying 
on Euler’s equation because there is usually a significant level of uncertainty about the relevant parameters and disturbance 
torques. 

One may not be able to avoid reliance on Euler’s equation when in back-up mode.  Therefore, it would be good to have 
better parameter estimates.  The scenario of this paper envisions the availability of highly accurate information from sensors 
during a time period before back-up mode operation is required.  Its estimation algorithm can use this data to develop attitude 
parameter estimates which could be used as part of a back-up system that could operate later in the mission if any of the 
primary sensors failed. 

A number of previous works have attempted to estimate attitude dynamics parameters.  Reference 2 performed off-line 
estimation of moment-of-inertia parameters by considering the nutation mode oscillations of a spinning spacecraft.  The 
direction, phasing, and frequency of these oscillations were used to correct 5 of the 6 inertia matrix elements.  Other efforts 
estimated corrections to 5 of the 6 inertia matrix elements as part of an EKF whose primary function was to estimate rate only 
or attitude and rate 4,6,7.  A common theme of these efforts is the attempt to improve parameter estimates in the Euler model 
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based on limited sensor data of moderate to coarse accuracy.  None of these systems attempted to estimate dynamics 
parameters other than elements of the moment-of-inertia matrix. 

This paper’s principal contributions are to define an attitude dynamics parameter estimation problem and to develop an 
algorithm to solve it.  The problem is based on satisfying Euler's equation.  A general set of Euler dynamics parameters can 
constitute the problem's unknowns.  These parameters enter Euler's equation linearly.  The problem formulation presumes that 
accurate 3-axis attitude and rate sensor time histories are available.  The measurement errors, such as rate-gyro errors and 
errors in the reported reaction wheel angular momenta, enter as perturbations to the coefficient matrix that multiplies the 
unknown parameter vector in the estimation equation.  This bilinear form of the model equation yields what is known as a 
total least-squares problem 8,9.  The solution algorithm simultaneously estimates the unknown parameter vector and the 
multiplicative measurement errors. 

There exist closed-form global solutions to certain total least-squares problems 8, but such techniques are not 
applicable to the attitude dynamics parameter estimation problem because their measurement error models are not general 
enough.  The philosophy taken here is that it is better to solve the desired problem using a less general, less robust algorithm 
than to use a more general, more robust algorithm that forces unrealistic modeling assumptions.  The exact solution of the 
wrong problem is normally not very useful! 

This paper’s algorithm applies a mixture of linear and nonlinear optimization techniques in a divide-and-conquer 
approach.  Recursive linear techniques are used to perform a global inner optimization that yields the best estimates of the 
multiplicative measurement errors for a fixed guess of the attitude dynamics parameter vector.  The recursion takes advantage 
of the dynamic structure of the measurement error effects.  An outer loop optimizes the least-squares cost via Newton’s 
iterative numerical method.  Safe-guards are employed to ensure convergence to at least a local minimum of the least-squares 
cost function. 

This paper develops a technique for dealing with the unobservability of the overall parameter scaling, which manifests 
itself in the form of a homogeneous least-squares problem.  A homogeneous problem is ill-posed, having the trivial solution x 
= 0.  This paper recovers observability and makes the problem well posed by adding a priori information in the form of a 
scalar constraint on a quadratic function of the unknown parameter vector.  Such a constraint, if properly designed, does not 
significantly bias the parameter estimates. 

The paper’s other main contribution is to test its new algorithm on actual spacecraft data.  These tests demonstrate the 
effectiveness of the method, and they illustrate difficulties that can arise when using actual data.  In particular, the results 
illustrate the significant impact of certain types of measurement errors and the importance of using data that includes 
sufficiently rich variations of the control input and attitude response time histories. 

The remaining 5 sections of this paper describe the parameter estimation problem, the solution algorithm, and the 
results that have been obtained for a test case.  Section II sets up the total least-squares attitude parameter estimation problem.  
Section III develops the solution algorithm for the estimation problem.  Section IV presents a recursive QR factorization 
algorithm that gets used to efficiently implement parts of Section III’s algorithm.  Section V applies the algorithm to data 
from the MAP spacecraft, and Section VI presents the paper’s conclusions. 

II. AN ATTITUDE PARAMETER ESTIMATION PROBLEM BASED ON EULER’S EQUATION 

Euler’s equation for the attitude dynamics of a rigid spacecraft with reaction/momentum wheels equates the time rate of 
change of angular momentum in inertial coordinates to the applied external torque.  A trapezoidally integrated version of 
Euler’s equation takes on the following form when expressed in inertial coordinates: 
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T
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The subscripts k and k+1 in this equation refer to values at the sample times of the beginning and end of the numerical 
integration interval, tk and tk+1.  Other quantities in eq. (1) are A, the direction cosines matrix for the transformation from 
inertial coordinates to spacecraft coordinates, Im, the moment-of-inertia matrix of the spacecraft body in body coordinates, ω, 
the angular velocity of the spacecraft with respect to inertial coordinates expressed in body coordinates, Crw, a scale-
factor/alignment matrix for the reaction wheels, hw, the vector of nominal reaction wheel angular momenta caused by their 
rotation rates with respect to the spacecraft, hbias, the net bias angular momentum in spacecraft coordinates of the reaction 
wheels and any other spacecraft instruments when hw = 0, bsc, the magnetic field vector in spacecraft coordinates, Cmt, a scale-
factor/alignment matrix for the magnetic torque rods, m, the vector of nominal torque rod magnetic dipole moments, mbias, the 
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net bias dipole moment in spacecraft coordinates of the torque rods and any other spacecraft instruments when m = 0, 
ngg(A,Gin,Im), the gravity gradient torque in spacecraft coordinates, and ∆hin, the net inertial impulse due to unmodeled torques 
during the integration interval.  The gravity gradient torque is a function of the attitude matrix, the gravity-gradient tensor in 
inertial coordinates, Gin, and the moment-of-inertia matrix. 

The unknown parameters that get estimated are Im, Crw, hbias, Cmt, and mbias.  It is assumed that the other quantities in the 
equation are all known, possibly with some measurement error.  Star tracker data are used to determine Ak and Ak+1.  Rate 
gyros provide ωk and ωk+1.  A magnetometer measures bsck and bsck+1.  The command and data handling system records hwk, 
hwk+1, mk, and mk+1.  The orbital ephemerides and an Earth gravity model can be used to compute Gink and Gink+1. 

The unknown parameters can be stacked into an estimation vector: 

x  =  [Im11, Im12, Im13, Im22, Im23, Im33, crw1
T, crw2

T,..., crwnw
T, hbias

T, cmt1
T, ..., cmtnt

T, mbias
T]T (2) 

where Imij is the ijth element of Im, crwj is the jth column of Crw, and cmtj is the jth column of Cmt.  The number of reaction wheels 
is nw, and the number of magnetic torque rods is nt.  Thus, there are nx = 12 + 3(nw+nt) elements in this vector of unknown 
parameters. 

The parameter estimation algorithm determines the parameter values that minimize the sum of the square errors in 
Euler’s equation.  It minimizes the weighted sum of the squared magnitudes of the residual unmodeled angular impulse time 
history ∆hin0, ∆hin1, ∆hin2, … ∆hinN-1.  Each ∆hink gets divided by its per-axis standard deviation σ∆hk = hkqt ∆∆ , where 
∆tk = tk+1-tk.  This operation normalizes the impulse errors before computing the sum of their squares.  The quantity q∆h is a 
continuous-time white process noise intensity and is expressed in N2-m2-sec units.  The unmodeled ∆hink impulses arise due to 
solar and albedo radiation pressure torque, aerodynamic drag torque, and thermal radiation pressure torque. 

An integrated version of Euler’s equation is used in order to avoid the need to differentiate the measured angular 
velocity vector time history, ωk, ωk+1, …  Trapezoidal integration yields a reasonable approximation if the rotation 
0.5(ωk+ωk+1)(tk+1-tk) has a magnitude much smaller than 1.  If the gravity-gradient and magnetic torques are negligible, then 
trapezoidal integration is exact.  Inertial coordinates are used in order to avoid the squaring of angular velocity that appears in 
the ω×Imω term of the spacecraft-referenced version of Euler's equation. 

Equation (1) could be generalized to include articulating appendages, such as solar arrays.  The estimator would need 
articulation angle data in this case, and it could estimate corrections to a subset of the appendage's moment-of-inertia 
elements.  If the spacecraft dynamics included significant flexibility or fuel slosh motions, then eq. (1) would be a poor 
dynamic model, and this paper's estimation algorithm would not produce useful results. 

All of the unknown parameters enter eq. (1) linearly.  This is obvious for all terms except the gravity gradient function.  
The gravity gradient formula is: 

ngg(A,Gin,Im)  =  
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where Gsc = AGinA
T is the gravity-gradient tensor in spacecraft coordinates.  The elements of Im enter eq. (3)'s gravity gradient 

torque model linearly. 

Measurement errors and the integrated effects of unmodeled disturbance torques cause eq. (1) not to be satisfied 
exactly.  Suppose that the true values, the measured values, and the measurement errors for the angular rate vector, the 
nominal wheel angular momenta, the magnetic field vector, and the nominal magnetic torque rod dipole strengths are: 

ωk  =  ωmeask  +  ∆ωk (4a) 
hwk  =  hwmeask  +  ∆hwk (4b) 
bk  =  bmeask  +  ∆bk (4c) 
mk  =  mmeask  +  ∆mk (4d) 

The quantities on the left-hand sides of these equations are the unknown true values that appear in eq. (1).  The terms with the 
()meas subscript on the right-hand sides are the known measured quantities, and the terms with the ∆ prefix are the unknown 
measurement errors.  The effects of star tracker measurement errors on Ak are not considered because they are normally 
insignificant. 

The estimation algorithm lumps all of the measurement errors into a single error vector that is re-scaled so that each of 
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its entries has unit variance: 

vk  =  [∆ωk
T/σω, ∆hwk

T/σhw, ∆bk
T/σb, ∆mk

T/σm]T (5) 

where σω, σhw, σb, and σm are the per-axis measurement error standard deviations of, respectively, the angular rate vector, the 
nominal wheel angular momenta, the magnetic field vector, and the nominal torque rod dipole moments.  The estimation 
algorithm assumes that vk is a zero-mean, identity-covariance, discrete-time, white-noise Gaussian random process, i.e., that vk 
~ N(0,I) and that E{vjvk

T} = 0 if j ≠ k.  The dimension of vk is nv = 6+nw+nt. 

The definitions in eqs. (2) and (4a)-(5) and the gravity gradient torque formula in eq. (3) can be used to re-write eq. (1) 
in the following generalized form: 

xEvE iki

n

i
kk

v
])([ 1

1
110 +

=
++ ∑+   =  xDvD iki

n

i
kk

v
])([

1
0 ∑+

=
  +  ηk (6) 

where the notation ()i refers to the ith element of the vector in question and where ηk = ∆hink/σ∆hk is the normalized angular 
impulse error vector.  The 3×nx matrices D0k, Dik, E0k+1 and Eik+1 can be computed from the measurements.  Their formulas can 
be derived based on eqs. (1)-(5).  The formulas for several columns of these matrices are given below as examples: 
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columns 7 through 9 of D4k  =  hwk
hk
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column 11 of E0k+1  =  
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columns 6 and 7 of E3k+1  =  
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where the notation ()ij refers to the ijth element of the matrix in question.  The remaining columns of the eq.-(6) matrices are 
straightforward to compute.  Their formulas have been omitted for the sake of brevity. 

Equation (6) fails to be an exact representation of eq. (1) on one point.  It has no provision to include the products of 
magnetic field measurement error vectors ∆b and magnetic torque rod dipole moment measurement errors ∆m.  These error 
product terms have been neglected because their inclusion would unnecessarily complicate the measurement model in eq. (6).  
These errors are small relative to the corresponding measured values.  Their product should be negligible. 

A lumped total least-squares parameter estimation problem can be defined by considering eq. (6) for the N different 
intervals, k = 0, 1, 2, ..., N-1.  Suppose that one lumps the measurement errors into one large vector and the torque errors into 
another large vector: 

vbig  =  [v0
T, v1

T, v2
T, ..., vN

T]T (8a) 
ηbig  =  [η0

T, η1
T, η2

T, ..., ηN-1
T]T (8b) 

The length of the large measurement error vector is nvbig = nv(N+1), and the length of the large torque error vector is 
nηbig = 3N.  One can lump the N copies of eq. (6) into the following large system of measurement equations: 
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where the large H matrices are: 
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Lumped measurement equation (9) and the statistical models of the random error vectors vbig and ηbig can be used to 
define the following nonlinear least-squares cost function: 

J(x,vbig)  =  xvHHvHHx j
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This paper's algorithm estimates x and vbig by finding the values that minimize this cost function subject to a constraint.  This 
cost function equals a constant plus the negative log of the probability density function for the error vectors vbig and ηbig 
conditioned on the parameters given in x.  Therefore, the minimizing x value is a maximum likelihood estimate, and the 
minimizing vbig value is a maximum a posteriori estimate. 

Extra information must get included in the estimation problem in order for it to generate a non-trivial solution.  The 
unconstrained global minimum of J(x,vbig) occurs at x = 0, vbig = 0 because eq. (9) lacks non-homogeneous terms.  The 
physical reason for this is that all of the parameters in the x vector can be scaled up or down without affecting the dynamic 
response of the system.  A large spacecraft and a small spacecraft will undergo the same dynamic response if the ratios of the 
parameters in the x vector are preserved. 

This paper's problem definition adds scaling information in the form of a scalar quadratic constraint on x that is part of 
the optimization problem.  This constraint takes the form: 

0  =  )()(1 T LxLx−  (12) 

where L is a non-zero matrix with nx columns and at least 1 row.  It is necessary to choose L wisely in order to get reasonable 
estimates from the algorithm.  Most of the problems solved in this paper use an L matrix that has 3nw rows.  All of its columns 
are zero except for columns 7 through (6 + 3nw).  These columns are set equal to the identity matrix divided by wn .  Given 
this definition, the constraint in eq. (12) forces the square of the Frobenius norm of Crw to equal nw.  This constraint controls 
scaling in a reasonable way: it forces the average of the squares of the reaction wheels' scale factor recalibrations to equal 1.  
If a given spacecraft has no reaction wheels, then a similar constraint could be applied to the square of the Frobenius norm of 
the magnetic torque rod scale-factor/alignment matrix Cmt.  Alternatively, it would be appropriate to enforce a constraint on 
the square of the Frobenius norm of Im for a spacecraft that has neither reaction wheels nor magnetic torque rods.  The best 
choice of L is problem dependent. 

The candidate L choices mentioned above have the common property that they act equally about all 3 spacecraft axes.  
One might be tempted to form a constraint that involves quantities only from one axis.  In theory, such a constraint should 
serve to enforce a reasonable scaling, but in practice, a single-axis constraint often leads to poor estimates.  Difficulties arise 
when there is only weak dynamic coupling between the axes.  In this situation, the axis with the constraint has a reasonable 
scaling, but the other 2 axes have scalings that are too small.  The estimator reduces the other 2 axes' contributions to J(x,vbig) 
simply by scaling down the x components associated with these axes.  The resulting estimates can have nonsensical relative 
scalings between the axes, scalings which can produce moment-of-inertia estimates that fail to obey the physical constraint 
that the maximum eigenvalue of Im must be less than the sum of the remaining two eigenvalues.  If the L matrix weights all 3 
axes equally, however, then the quadratic constraint will tend to balance the relative scaling between the axes in a reasonable 
manner. 

Another type of scaling error can arise even when the quadratic constraint weights the 3 axes equally.  Consider an 
example with weak coupling in which the measurements or unmodeled torques on one axis are much noisier than on another 
axis.  The estimation algorithm will scale down the elements of x associated with the noisier axis in order to better minimize 
J(x,vbig).  In this situation, the user would have to recognize that one axis is noisier than the others and re-scale that axis' 
measurement error or torque σ values so that the matrices of eq. (6) will properly account for the increased noise level. 

There is an option to incorporate a priori information about the x parameter vector.  This information takes the form of 
an a priori square-root information equation 10: 

Rapx  +  zap  =  ηap (13) 
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where Rap and zap are the a priori square root information matrix and vector, respectively, and where ηap is a zero-mean, 
identity-matrix-covariance Gaussian random vector, ηap ~ N(0,I). 

The final form of the estimation problem, after the incorporation of the quadratic constraint and the a priori 
information, is: 

find: x and vbig (14a) 

to minimize: J(x,vbig)  =  xvHHvHHx j

n

j
bigjj

n

j
bigj

vbigvbig
])([])([

1
0

T

1
0

T
2
1 ∑+∑+

==
 

  +  ][][ T
2
1

apapapap zxRzxR ++   +  bigbigvvT
2
1  (14b) 

subject to: 0  =  )()(1 T LxLx−  (14c) 

The a priori information equation should be used only in two situations.  The first is when there is very accurate a 
priori information about some of the elements of x.  The second is when one needs to enforce an additional constraint in order 
to make the problem observable.  In this latter situation, the constraining row of Rap and the corresponding row of zap will take 
on very large values, normally orders of magnitude larger than the corresponding rows of the H matrices.  This large row acts 
as a soft constraint on the solution.  Note, however, that one must use numerically robust square-root-based techniques, as are 
developed in Sections III and IV, if one wants to mitigate the potential for adverse affects from the resulting wide variations 
in the sizes of different problem matrices. 

One must be careful to apply an extra linear constraint in the form of an a priori information equation only where 
appropriate.  One might think of trying to substitute a linear overall scaling constraint for the quadratic scaling constraint in 
eq. (14c).  This may not be a good idea because a linear scaling constraint may bias the relative scalings between the different 
axes towards equality even when the true scalings are not equal. 

An appropriate situation for adding a linear constraint occurs when one is also estimating the moment-of-inertia matrix 
of a rotating flexible appendage.  Suppose that the appendage's center of mass lies on the rotation axis, that [q1,q2,q3] is an 
orthonormal triad in the main spacecraft's coordinate system, and that q3 is directed along the appendage articulation axis.  It 
is possible to make simultaneous unobservable changes to the moment-of-inertia matrix of the main spacecraft body Im and 
the moment-of-inertia matrix of the appendage Ia.  Given any scalar β, the unobservable change adds β(q1q1

T+q2q2
T) to Im 

while subtracting the same quantity from Ia.  It is easy to show that these changes are unobservable because their effects on 
the system angular momentum exactly cancel regardless of the appendage articulation angle.  The following a priori linear 
constraint removes this ambiguity: 

)(-)( 2
T
21

T
12

T
21

T
1 qIqqIqqIqqIq aamm ++ γ   =  0 (15) 

where γ is a positive number that makes the a priori estimates of Im and Ia satisfy this constraint. 

III. ATTITUDE PARAMETER ESTIMATION ALGORITHM 

A. Algorithm Overview 

The solution algorithm for the problem in eqs. (14a)-(14c) exploits its bi-linear structure.  For a fixed x, the cost 
function is a linear least-squares cost in the unconstrained variable vbig.   Matrix factorizations can be used in an inner-loop 
optimization to solve for the global minimizer vbig as a function of x.  Call this solution vbigopt(x).  This solution can be 
substituted into the original cost function in eq. (14b) in order to define a new reduced-order estimation problem: 

find: x (16a) 
to minimize: Jro(x)  =  J[x, vbigopt(x)] (16b) 
subject to: )()(10 T LxLx−=  (16c) 

This reduced-order problem is then solved numerically using the iterative Newton method in an outer optimization loop. 

Newton's method applied to problem (16a)-(16c) starts with a guess x0 that satisfies the quadratic constraint in eq. 
(16c).  Next, it defines a nonlinear function xcurve(x0+∆x) that is guaranteed to remain on the quadratic constraint as ∆x varies 
from zero and that takes on the initial value xcurve(x0) = x0.  It uses this function to define the quadratic cost function 
approximation: 

Jnewt(∆x, ∆vbig) ≅  J[xcurve(x0+∆x), vbigopt(x0)+∆vbig] 
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 =  J[x0, vbigopt(x0)]  + xgx ∆T   + 
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where the matrices Wxx, Wxv, and Wvv are blocks of the Hessian matrix.  This approximate cost function gets minimized subject 
to the linearized approximation of the constraint in eq. (16c): (Lx0)

TL∆x = 0.  The solution is [∆xopt; ∆vbigopt], and ∆xopt is the 
Newton step towards the solution of problem (16a)-(16c). 

The Newton iteration finishes by performing a line search to approximately minimize the 1-dimensional cost function 
J1D(α) = J{xcurve(x0+α∆xopt), vbigopt[xcurve(x0+α∆xopt)]}.  A step length of α = 1 is tried in order to get the superlinear 
convergence of Newton's method when x0 is near the solution, but α gets decreased from 1 if necessary when far from the 
solution in order to guarantee a cost decrease: J1D(αopt) < J1D(0).  This forced decrease of the cost safe-guards the Newton 
algorithm so that it is guaranteed to converge at least to a local minimum.  Enforcement of the cost-decrease constraint can be 
accomplished by an appropriate search process 11.  The improved guess of the solution becomes the next Newton iterate, 
x1 = xcurve(x0+αopt∆xopt), and the process can be repeated until it converges to a local minimum. 

It is possible, in theory, to reverse the roles of x and vbig in the algorithm, but this approach works poorly in practice.  
For a fixed guess of vbig, one can solve exactly for the x that globally minimizes of the cost function in eq. (14b) subject to the 
constraint in eq. (14c).  The global minimization can be performed using an algorithm found in Ref. 12, or if zap = 0, by using 
two singular-value decompositions (SVDs) and several QR factorizations.  This reversed method has been tried, but it does 
not work well.  One problem with this approach is the difficulty of finding a reasonable initial guess of vbig.  Seemingly 
reasonable values, such as vbig = 0, can produce very strange results when the measurement error standard deviations are large.  
Another problem with this approach is that the reduced-order cost function, Jro(vbig) = J[xopt(vbig), vbig], can have strong 
nonlinearities that retard convergence.  These strong nonlinearities may result from the fact that the inner optimization of x 
resembles an eigenvalue/eigenvector problem, and such problems can be very sensitive to their inputs when there are repeated 
eigenvalues. 

B. Inner-Loop Optimization of vbig 

The inner-loop optimization of vbig for x fixed at x0 minimizes the linear least-squares cost function 

Jinner(vbig)  =  }0{}0{ T
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which is equivalent to the cost in eq. (14b) without the a priori terms if ev and Hv are 

ev  =  H0x0   and  Hv  =  [(H1x0), (H2x0), (H3x0), ..., (Hnvbigx0)] (19) 

Although not explicitly stated, ev and Hv depend on x0 as shown in eq. (19). 

The linear least-squares optimization problem in eq. (18) gets solved using standard QR factorization techniques 11.  
An orthogonal matrix Qv and a square, upper-triangular, non-singular matrix Rvv get computed via QR-factorization to satisfy 
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and the optimal vbig gets computed as 

vbigopt(x0) =  - [ ] 





00 T1- v
vvv

eQR  (21) 

The matrices involved in this calculation are large and sparse and have a dynamic programming structure.  Section IV 
develops equivalent calculations that use an efficient recursion which exploits this structure. 

C. Enforcement of the Curved Constraint 

The purpose of the function xcurve(x) is to generate a vector that satisfies the constraint in eq. (16c) while being close to 
x.  It must have the property that xcurve(x0) = x0 if x0 satisfies the constraint, and the difference xcurve(x) - x must be small if x is 
near the constraint.  These properties enable the line searches within the iterative Newton optimization procedure to exactly 
follow the curved constraint in eq. (16c). 

A suitable function xcurve(x) has been developed based on the singular value decomposition of L: 
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where the matrices UL1, UL2, VL1, and VL2 are sets of columns of the orthogonal factors of the SVD and where ΣL is the 
positive-definite diagonal matrix that contains the non-zero singular values of L.  The matrix VL1

T projects x onto a subspace 
in which every component affects the quadratic constraint, and the matrix VL2

T projects x onto the complementary subspace in 
which none of the components affect the constraint.  Given these matrices, a suitable xcurve(x) function is 

xcurve(x)  =  xVV
LxLx

VV
LL

LL )
)()(

( T
22

T

T
11 +  (23) 

The idea of this function is to split x into its constrained and unconstrained components and then to re-scale the constrained 
component by 1/ )()( T LxLx  in order to force satisfaction of the constraint.  Given the SVD in eq. (22), it is straightforward 
to demonstrate that xcurve(x) satisfies the quadratic constraint in eq. (16c), that xcurve(x0) = x0 when x0 satisfies the constraint, 
and that xcurve(x) - x is small when x is near the constraint. 

D. Quadratic Problem and Solution for Newton Increment to x 

The following quadratic approximate cost function is used for determining the Newton increment to x: 

Jnewt(∆x, ∆vbig) =  }0
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where e = Hxx0, eap  = Rapx0+zap, Hx = H0 +H1(vbigopt)1 +H2(vbigopt)2 +...+ Hnvbig(vbigopt)nvbig, and B = [(H1
Te), (H2

Te),..., (Hnvbig
Te)].  

Note, e is the error in the concatenated set of Euler equations, and eap is the error in the a priori information equation.  Both 
errors are evaluated at the current solution guess [x0; vbigopt(x0)]. 

The quantity λ in eq (24) is like a Lagrange multiplier.  It predicts the cost effects of the curvature in xcurve(x0+∆x) 
under the conditions that x0 satisfies the quadratic constraint in eq. (16c) and that ∆x satisfies the linearized approximation of 
the constraint: aT∆x = 0 where a = LTLx0.  The proper value of this multiplier depends on the actual form of the function 
xcurve(x).  For the function defined in eq. (23) the proper value is 

λ  =  ][ TTT
11

T
0 apapxLL eReHVVx +  (25) 

The solution for the minimum of eq. (24) subject to the constraint aT∆x = 0 starts with a transformation of the first cost 
term that enables unconstrained minimization with respect to ∆vbig.  Suppose that one performs the following QR factorization 
and associated transformation 
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where Qbig is an orthogonal transformation, Rvv, Rvx, and Rxx are block matrices, with Rvv and Rxx square and upper-triangular 
and Rvv nonsingular, and zx and zr are vectors.  The upper zero in the large vector that contains zx and zr is there by virtue of 
the fact that the cost function in eq. (24) is an expansion about an optimized value of vbig.  The Qbig matrix can be used to 
transform each of the factors in the first cost term of eq. (24) so that the block matrices and vectors on the left-hand sides of 
eqs. (26) replace those on the right.   After performing this transformation, the minimizing ∆vbig can be determined by solving 
the necessary condition that results from setting the partial derivative of Jnewt(∆x, ∆vbig) with respect to ∆vbig equal to zero.  
The result is 

∆vbig  =  - x])([ T11 ∆−− + vvvxvv BRRR  (27) 

Note that the matrices in eqs. (26) and (27) are large, sparse, and structured.  Section IV presents techniques that exploit the 
structure of these matrices in order to carry out the calculations of eqs. (26) and (27) in an efficient recursive manner. 
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The optimal solution for ∆vbig can be used to eliminate it from the transformed version of the cost function in eq. (24).  
This leaves a linearly constrained reduced-order quadratic optimization problem whose solution is the Newton search 
direction: 

find: ∆x (28a) 
to minimize: Jnewtro(∆x)  =  xLL-BR-RRBR-BRBR-RRx vvvxvxvvvvvvxxxx ∆λ∆ })()())(({ TT1T1T11TT

2
1 −−−−  

  + xRz xxx ∆)( T   + )( TT
2
1

rrxx zzzz +  (28b) 

subject to: 0  =  aT∆x  =  (LTLx0)
T∆x (28c) 

The problem in eqs. (28a)-(28c) can be solved using QR factorizations and Cholesky factorizations.  The first QR 
factorization is used to determine the null space of the constraint: 

[ ] arQq a
aa =





021  (29) 

where qa1 is the first column of the resulting orthogonal matrix, Qa2 constitutes the last nx-1 columns, and ra is a non-zero 
scalar.  This factorization can be used to transform the perturbation vector ∆x into a constrained component, ∆xc, and an 
unconstrained component, ∆xu: 
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One next uses Qa2 to project the square-root weighting matrix Rxx onto the unconstrained ∆xu space and then one QR-
factorizes the result to retrieve a square-upper triangular matrix: 

20 axx
uu

u QRRQ =



  (31) 

where Qu is an orthogonal matrix and Ruu is a square, upper-triangular, nonsingular matrix of dimension nx-1. 

Next, one defines the change of coordinates ∆zu = Ruu∆xu.  The following unconstrained ∆zu optimization problem is 
then equivalent to the estimation problem in eqs. (28a)-(28c): 

find: ∆zu (32a) 
to minimize: Jnewtz(∆zu)  =  uzzu zWI- z ∆∆ρ∆ }{T

2
1   + uz zg ∆T   + )( TT

2
1

rrxx zzzz +  (32b) 

where  

zzW∆   =  1
2

TT1T1T11T
2

T1 })()())({()( −−−−−− +++ uuavvvxvxvvvvvvauu RQLLBRRRBRBRBRQR λ  (33a) 

zg   =  xxxauu zRQR TT
2

T1)( −  (33b) 

and where the positive scalar ρ is normally set equal to 1.  ρ will get increased above 1 if necessary in order to ensure that the 
cost Hessian matrix ρI-∆Wzz is positive definite.  This modification option is part of the guarding technique that ensures the 
convergence of Newton's method to a local minimum.  Its effect on ∆x guarantees that there exists a positive α which yields a 
decrease of the line-search cost function Jro[xcurve(x0+α∆x)]. 

The Cholesky factorization of the Hessian produces Rzz such that 

zzzzRRT   =  zzWI- ∆ρ  (34) 

where Rzz is a square, upper-triangular, nonsingular matrix of dimension nx-1.  The Cholesky factorization process can be used 
to monitor the positive definiteness of the Hessian.  One begins using the value ρ = 1.  If the Cholesky factorization process 
fails because the matrix on the left-hand side of eq. (34) is not positive definite, then ρ gets increased, and the Cholesky 
factorization gets re-evaluated.  A simple geometric progression of the form ρnew = 1.05ρ normally yields a positive definite 
Hessian matrix after a few Cholesky factorizations.  The matrix dimensions involved are not very large.  Therefore, it is 
acceptable to determine a reasonable value of ρ via this brute-force heuristic iteration.  One might try a larger increase factor 
if one finds that too many iterations are required to determine an acceptable ρ value. 
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The final problem transformation from ∆xu to ∆zu is motivated by numerical considerations.  One should avoid the 
squaring of matrices because squaring amplifies the adverse effects of poor matrix conditioning.  The transformation to ∆zu 
allows one to avoid squaring the matrix Ruu before computing the Cholesky factorization of the Hessian.  For a small residuals 
estimation problem, i.e., for small e, the magnitude of ∆Wzz will be small.  In this case, ρ = 1 will yield a positive definite, 
well-conditioned Hessian matrix for the ∆zu problem, and the only squaring that occurs, the squaring in eq. (33a), will have no 
adverse effects on the solution. 

The matrix factorizations and problem transformations in eqs. (29)-(34) can be used to solve the original problem in 
eqs. (28a)-(28c).  The solution is: 

∆x  =  - zzzzzuua gRRRQ T111
2 )( −−−  (35) 

These matrix factorizations also provide a means of calculating the estimation error covariance matrix: 

Pxx  =  T11
2

11
2 )( −−−−

zzuuazzuua RRQRRQ  (36) 

In reality, this is only an approximation of the Cramer-Rao lower bound of the estimation error covariance.  This covariance 
matrix is only valid at the termination of the optimization process, when x0 is the final solution to the estimation problem and 
when ρ = 1.  Note that Pxx is singular.  All of its eigenvalues are positive except for one that is zero.  It corresponds to the 
eigenvector in the direction a = LTLx0, which is the normal to the quadratic constraint in eq. (16c).  It makes sense for Pxx to 
have a zero eigenvalue in this direction because, according to the constraint, this component of x is known exactly. 

E. Warning about Total Least Squares Problems 

It is well known that total least squares problem can fail to have sensible solutions 8.  If the attitude parameter 
estimation problem in eqs. (14a) - (14c) does not have a sensible solution, then this fact will manifest itself in a failure of the 
guarded Newton method to converge.  It will continue to decrease its cost at every iteration, but the usual algorithm 
termination criterion of ||∆x|| → 0 will not be achieved.  If the algorithm fails to converge even after hundreds of iterations, 
then one should consider whether the problem is well posed.  It is often possible to transform an ill-posed problem into a well-
posed problem by adding a priori information through Rap and zap or by decreasing the measurement error standard deviations 
σω, σhw, σb, and σm. 

IV. RECURSIVE QR MATRIX FACTORIZATIONS AND INVERSIONS 

The QR factorizations in eqs. (20) and (26) and the inversions of Rvv in eqs. (21) and (27) can be carried out in an 
efficient recursive manner.  The following analysis concentrates on recursive calculations for the large matrix operations in 
eqs. (26) and (27).  The methods for eqs. (20) and (21) are almost identical and are discussed only in brief at the end of this 
section. 

Suppose that one interchanges the order of the rows on the right-hand sides of the two equations in eq. (26).  Then the 
error equations whose squares form the first term on the right-hand side of eq. (24) can be rewritten in the form: 
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where, based on eq. (6) and associated definitions, 

Dvk = [D1kx0, D2kx0, ..., Dnvkx0]  for k = 0, ..., N-1 (38a) 
Evk = [E1kx0, E2kx0, ..., Envkx0]  for k = 1, ..., N (38b) 
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++  and ek = Fkx0  for k = 0, ..., N-1 (38c) 

An iterative QR factorization is then used to orthogonally transform eq. (37) into the following form: 
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Each Rkk, Rkk+1, and Rkx is a matrix block, with Rkk square, upper-triangular, and nonsingular, and each zk is a vector.  The 
matrix Rxx and the vectors zx and zr are exactly as defined in eq. (26).  The upper right-hand blocks involving Rkk for k = 0, ..., 
N and Rkk+1 for k = 0, ..., N-1 constitute the Rvv matrix of eq. (26).  The far-left blocks involving Rkx for k = 0, ..., N-1 
constitute the Rvx matrix of eq. (26).  In accordance with eq. (26), the vectors z0, ..., zN will be zero because eq. (26) is a 
linearization about optimized vk values. 

The transformation from eq. (37) to eq. (39) proceeds as follows.  It temporarily stores intermediate results in three 
matrices, Rt11k, Rt12k, and Rt22k, and in two vectors, zt1k and zt2k.  At k = 0 these temporary matrices and vectors get initialized to 
be empty arrays.  Their values at later stages get computed by the factorization process.  The transformation starts by 
recursively performing the following QR-factorization and transformation for stages k = 0, ...,N-1: 
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At stage N the transformation takes the modified form. 
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The vectors zr0, ..., zrN are components of the large residual error vector zr from eq. (26). 

Given transformed eq. (39), the two multiplications by 1−
vvR  in eq. (27) can be performed as follows.  Suppose that the 

large matrix B in eq. (27) is broken down into blocks: B = [B0,B1,...,BN] and suppose that the matrix 1−
vvBR  is also broken 

down into blocks: 1−
vvBR  = [C0,C1,...,CN].  Then the blocks of this latter matrix can be calculated by using the following 

recursion: 

1
0000
−= RBC   and   1

11 ][ −
−−−= kkkkkkk RRCBC  for k = 1, ..., N (42) 

Next, define the vector sequence ∆zvk = (Rkx+Ck
T)∆x for k = 0, ..., N.  This vector sequence is used in the following backwards 

recursion in order to complete the evaluation of eq. (27): 

vNNNN zRv ∆∆ 1−−=   and   ][ 11
1

++
− +−= kkkvkkkk vRzRv ∆∆∆  for k = N-1, N-2, N-3,..., 0 (43) 

Note that the Ck values from eq. (42) can also be used to develop efficient summations that compute the terms involving 
1−

vvBR  in eq. (33a)'s formula for ∆Wzz. 

The evaluation of eqs. (20) and (21) proceeds in a similar manner.  There is no need to include the columns associated 
with x in the equivalents of eqs. (37), (39), (40), and (41).  The vk vectors in the equivalents of eq. (37), (40), and (41) are all 
set to zero, and the vectors ek  = (E0k+1-D0k)x0 in these equations because they are linearized about vk = vk+1 = 0.  This causes 
the vectors z0, ..., zN in the equivalent of eq. (39) to be non-zero.  They replace the ∆zvk vectors in the equivalent of eq. (43), 
and the outputs of that equation's recursion are v0opt(x0), v1opt(x0), ... vNopt(x0). 
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V. RESULTS USING DATA FROM THE MAP SPACECRAFT 

A. Overview of Spacecraft and Data Sets 

The new parameter estimation algorithm has been tested using flight data from the MAP spacecraft.  MAP was 
launched on June 30, 2001 and reached its final orbit near the L2 Lagrange point of the Sun/Earth-Moon system on Oct. 1, 
2001 after using gravity assists from the Moon 13.  The spacecraft carries two star trackers and a 3-axis rate-gyro package for 
attitude sensing, and it uses three nearly orthogonal reaction wheels to control attitude.  Dynamics parameters have been 
estimated using data that was collected on July 1 and 2, 2001.  Gravity-gradient and magnetic torques have been neglected 
because the spacecraft was far enough from the Earth during this time to render Gsc and bsc negligible. 

The estimation problem has been defined to estimate an 18-element x vector.  It includes the 6 independent elements of 
the moment-of-inertia matrix, Im, the 9 elements of the reaction wheel scale-factor/alignment matrix, Crw, and the 3 elements 
of the reaction wheel angular momentum bias vector, hbias.  The quadratic constraint in eq. (14c) is defined to constrain the 
sum of the norms squared of the 3 columns of Crw to equal 3. 

The white-noise intensity of the unmodeled torque and the measurement error standard deviations that have been used 
in the estimator are q∆h = 2.3×10-11 N2-m2-sec, σω = 2.5×10-6 rad/sec, and σhw = 0.0244 N-m-sec.  Note that σhw is relatively 
large, on the order of 2.5% of the total system angular momentum, which was about 1 N-m-sec during the time when flight 
data was collected.  The limited resolution of hwmeask provided the most significant noise source in the estimation problem.  Its 
largeness stems from the limited number of bits that could be used to telemeter reaction wheel data to MAP's ground station.  
It is believed that the actual flight hardware keeps track of hwmeask using a much higher precision. 

Three different data sets have been used to do estimation.  The first is about 6 hours long and starts at 15:19 UT on 
July 1, 2001.  It includes 10 large-angle slew maneuvers that are controlled by the reaction wheels.  The second data set is 
about 5 hours long and starts at 12:57 UT on July 2, 2001.  It also includes 10 slew maneuvers that are similar in magnitude, 
but they are more abrupt.  The third data set is only 1.6 hours long and starts at 19:22 UT on July 2, 2001.  It operates in the 
MAP sky scanning mode.  It rotates about its z axis at a nominal rate of 0.047 rad/sec (spin period = 134 sec).  Super-imposed 
on the spin is a nutation that has a body-axis period of 129 sec and a coning half angle which ranges from 17 deg to 28 deg.  
This motion is controlled by the reaction wheels.  They operate at a nominal angular momentum magnitude of ||hwmeask|| = 
29.3 N-m-sec in order to produce this motion, and the range of the dynamic variations of the wheel angular momentum for 
each axis is no more than 0.34 N-m-sec.  Thus, this last data set lacks significant variability of its wheel speeds and its body-
axis angular rates.  The nominal sample interval for all data sets is ∆tk = 10 seconds.  Data is available at 1 Hz, but a 0.1 Hz 
sampling rate has been used in the interests of conserving computation time. 

B. Representative Results 

Consider the results of a typical estimation case.  This case uses all three data sets simultaneously in its estimation.  
Different data sets can be concatenated by zeroing out the D0k, Dik, E0k+1, and Eik+1 matrices for the stage that falls on the 
boundary between two data sets.  The estimation problem does not include any a priori information in the form of Rap and zap.  
The algorithm converged to a well defined minimum of the least-squares cost function in about a dozen Newton iterations 
starting from the pre-flight estimates of the dynamic parameters. 

The algorithm is able to improve its attitude dynamics parameter estimates significantly.  Although there are no known 
truth values against which to measure success, there are several metrics that point to a significant improvement.  One 
indication is that the final parameter estimates' least-squares cost is smaller than the initial cost by a factor of 9 even though 
the initial cost was calculated after partial optimization of the measurement error estimates in vbig.  This large difference in 
cost occurs mostly in the third data set. 

Consider the modeling errors shown in Fig. 1.  The top graph plots norm time histories for the estimated wheel angular 
momentum measurement error ||∆hwk||, and the bottom graph plots norm time histories for the unmodeled disturbance torque 
||∆hink/∆tk||.  The solid grey curves on the two graphs correspond to the nominal pre-launch dynamic parameter estimates, and 
the dotted black curves correspond to the new algorithm's best estimates of the parameters.  Both sets of curves use optimal 
estimates of the measurement errors.  The new estimates of the dynamic parameters yield measurement errors and unmodeled 
torques that, on average, are about 7 to 7.5 times smaller than those associated with the pre-flight parameters.  Thus, the new 
parameter estimates model the MAP spacecraft's dynamics much better than do the pre-flight parameters. 

The differences between the new parameter estimates and the pre-flight values are statistically significant.  The 
maximum difference between the old and new estimates of the elements of Im is 7.3% of the maximum principal inertia, but 
the maximum calculated estimation error standard deviation for an Im element is only 0.28% of the maximum principal inertia.  
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Similarly, the maximum change in an element of the Crw matrix is 0.035 while the maximum standard deviation for the 
estimation error of an element of Crw is 0.0026.  The differences between the pre-flight parameter estimates and the new 
estimates are small enough to seem reasonable, given the usual methods by which pre-flight estimates are determined, yet they 
a significant if one needs a very accurate model of the attitude dynamics. 

A more comprehensive method of assessing the statistical significance of the differences between the pre-flight and 
optimal parameters is to calculate the scalar test statistic (xopt-xpreflight)

TQa2Ruu
TRzz

TRzzRuuQa2
T(xopt-xpreflight).  This is the 

difference squared of the estimates normalized by the inverse of the estimation error covariance matrix as projected into the 
null space of the quadratic constraint in eq. (14c).  This statistic will be a sample from a χ2 distribution of degree nx-1 if the 
differences between the two estimates are merely the result of random errors.  The value of this statistic is 1.74×105 for this 
case.  Given that nx-1 = 17, there is virtually zero probability that these parameter differences are the result of random noise.  
Put differently, the average difference between the pre-flight parameter estimates and the optimal estimates is 

1710741 5 /. ×  = 101 standard deviations, which is very significant. 

One might question how differences of Im and Crw that are on the order of 7% or less can produce the factor-of-7 
differences in the error magnitudes shown on Fig. 1.  The answer has to do with how MAP was being controlled during the 
third data set.  The magnitude of the actual wheel angular momentum is 27 N-m-sec, and the magnitude of the rotational 
angular momentum of the main spacecraft body is 26 N-m-sec, but the total spacecraft angular momentum is only 1 N-m-sec.  
Thus, the large wheel angular momentum and the large rotational angular momentum almost cancel each other out to yield a 
total angular momentum that is less than 4% of either component's angular momentum.  This cancellation has the potential to 
amplify the significance of parameter errors by a factor of 26 to 27, which is why a 7% change in an element of Im can have 
such a large impact on the unmodeled torque magnitudes. 

C. Prediction Capability 

Another case has been run to more clearly illustrate the usefulness of the algorithm's parameter estimates for purposes 
of predicting the dynamic response of the MAP spacecraft.  In this test, only the first 2 data sets have been used to estimate 
parameters, and the resulting parameter values have been used to estimate unmodeled torque errors and measurement errors 
for the third data set without further correction of the parameter estimates.  The resulting wheel angular momentum errors and 
unmodeled torques are shown in Fig. 2.  Note that the axis scales of Fig. 2 are the same as in Fig. 1.  It is obvious from a 
comparison of the two figures that the parameter estimates from the first 2 data sets do a much better job of predicting the 
MAP attitude dynamics than do the pre-flight parameter estimates -- compare the solid grey curves on Fig. 1 with the curves 
on Fig. 2.  The model errors when using the parameter estimates from the first two data sets are between 4.5 and 5 times 
smaller, on average, than the model errors when using the pre-flight parameters.  Also obvious is the fact that the parameter 
estimates which use all three data sets do a slightly better job of modeling the attitude dynamics during the 3rd data set -- 
compare the dotted black curves on Fig. 1 with the curves on Fig. 2.  This makes sense because the optimal parameter 
estimates from Fig. 1 interpolate into the third data set. 

D. Degradation of Estimation Error with Limited Data 

Another case has been run in an attempt to estimate parameters based only on the third data set.  Recall that the third 
data set does not have a rich dynamic response.  It just nutates with reaction wheel speeds and an angular velocity vector that 
are almost constant.  If the only scaling information added to the problem is the quadratic constraint, then the estimation 
algorithm takes many iterations to converge, 117, and its estimates are nonsensical.  The reaction wheel scale factors differ 
from the pre-launch estimates by as much as 47%, and the Im estimate has two negative eigenvalues! 

An attempt has been made to rescue the situation by adding a priori information.  The Rap and zap values have been set 
up to indicate that the a priori reaction wheel scale factors are accurate to within 0.2% 1-σ.  This estimation run yields more 
reasonable estimation results.  All of the eigenvalues of the Im estimate are positive, and the estimates of the elements of Crw 
differ from their pre-launch values by no more than 0.086.  Nevertheless, the overall estimated parameter vector is not very 
accurate.  For example, the minimum eigenvalue of the Im estimate is only 10% of the pre-flight value.  It is unrealistic to 
suppose that the pre-flight estimate would be in error by such a large amount. 

The calculated estimation error standard deviations are very large even when the algorithm thinks that it has been given 
highly accurate a priori estimates for the scalings of the Crw columns.  The best estimation error standard is 2 times larger than 
the corresponding standard deviation for the case that uses all 3 data sets.  The worst one is almost 5000 times larger than its 
counterpart for the 3-data-set case.  This is particularly telling when one considers that the case with 3 data sets did not even 
include a priori information beyond the quadratic constraint.  Thus, it is critically important to use data with rich dynamic 
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variations in the control inputs and the attitude response if one wants to get good parameter estimates from this paper's 
algorithm. 

E. Miscellaneous Results Discussion 

A test has been made of what happens when one tries to pose the attitude estimation problem as a regular least-squares 
problem with a quadratic constraint.  One might be tempted to model the problem in this way because the global solution can 
be determined simply by performing two SVDs and several QR factorizations.  What one sacrifices is model fidelity.  One 
must eliminate the multiplicative errors from the model, which eliminates the errors in ωk and hwk.  The difficulty with this 
approach is that these are the problem's most significant error sources.  If one eliminates them, then the problem model 
becomes dubious.  Although the problem is easy to solve, it is obvious that the resulting estimates contain significant errors.  
The minimum eigenvalue of the Im estimate is only 22% of the pre-flight estimate, and the columns of the Crw estimate differ 
in alignment from their pre-flight values by 20 to 27 deg.  This failure highlights the importance of proper error modeling in 
parameter estimation problems. 

As mentioned already, the dominant errors in the MAP attitude dynamics data are those in the reaction wheel telemetry 
stream, hwmeask.  This fact suggests two ideas for future consideration.  The first is that it would good for attitude estimation 
and control engineers to ask command and data handling engineers to deliver more accuracy in the hwmeask telemetry stream on 
future missions.  The current level of accuracy may suffice for normal "housekeeping" purposes, but increased accuracy could 
be critical to any attempt to implement back-up mode attitude determination or control functions in the event of a hardware 
failure. 

The second idea has to do with the design of attitude estimation algorithms based on Euler's equations.  This paper's 
parameter estimation algorithm obtains good results when it estimates corrections to the telemetered reaction wheel angular 
momentum time histories.  This suggests that one should include estimation of reaction wheel corrections in an Euler-based 
attitude and rate estimation Kalman filter if the reaction wheel data is of low accuracy.  Such an augmentation may make the 
difference between success and failure of the attitude filter. 

VI. CONCLUSIONS 

A new algorithm has been developed for estimating the parameters of a spacecraft's attitude dynamics model by using 
telemetered attitude and rate measurements.  The estimated quantities include the moment-of-inertia matrix and, if present, 
alignments, scale factors, and biases for reaction wheels and magnetic torque rods.  The input data includes 3-axis attitude 
from star trackers, 3-axis rate from rate gyros, nominal reaction wheel angular momenta, nominal torque rod dipole moment 
strengths, and magnetic field as measured by a magnetometer. 

The algorithm uses a trapezoidally integrated version of Euler's equation in inertial coordinates as its basic estimation 
equation.  The resulting estimation problem includes additive disturbance torque errors and multiplicative sensor 
measurement errors and is in the general form known as a total least-squares problem.  A scalar quadratic constraint is added 
to the least-squares problem statement in order to make it well posed by constraining the overall scaling of the parameter 
estimates. 

The algorithm uses inner and outer least-squares optimizations to estimate the dynamic model parameters.  The inner 
optimization uses linear least-squares techniques to compute estimates of the sensor measurement errors for given values of 
the model parameters.  The outer optimization uses a guarded Newton iterative numerical procedure to estimate the most 
likely model parameters. 

The algorithm has been tested using data from the MAP spacecraft.  The algorithm's best estimates of the moment-of-
inertia matrix and the reaction wheel scale-factor/alignment matrix differ from the pre-flight estimates by 7% or less, but they 
can reduce the level of torque modeling error by a factor of 5 to 7 in certain modes of operation where spacecraft angular 
momentum and reaction wheel angular momentum almost cancel each other. 
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Fig. 1. Comparison of wheel angular momentum error 

magnitudes (top plot) and unmodeled disturbance 
torque magnitudes (bottom plot) for two different 
parameter estimates, 3rd data set. 
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Fig. 2. Wheel angular momentum error magnitudes (top 

plot) and unmodeled disturbance torque magnitudes 
(bottom plot) for the 3rd data set when using 
parameter estimates based on the first 2 data sets. 


